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Abstract—Background: Brain-computer interfaces (BCIs) de-
code neural activity and extract from it information that can be
meaningfully interpreted. One of the most intriguing opportuni-
ties is to employ BCIs for decoding speech, a uniquely human
trait, which opens up plentiful applications from rehabilitation of
patients to a direct and seamless communication between human
species. To decipher neuronal code complex deep neural networks
furnish only limited success. In such solutions an iffy performance
gain is achieved with uniterpretable decision rules characterised
by thousands of parameters to be identified from a limited
amount of training data. Our recent experience shows that
when applied to neural activity data compact neural networks
with trainable and physiologically meaningful feature extraction
layers [1] deliver comparable performance, ensure robustness of
the learned decision rules and offer the exciting opportunity of
automatic knowledge discovery.

Methods: We collected approximately one hour of data (from
two sessions) where we recorded stereotactic EEG (sEEG) activity
during overt speech (6 different randomly shuffled phrases and
rest). We have also recorded synchronized audio speech signal.
The sEEG recording was carried out in an epilepsy patient
implanted for medical reasons with an sEEG electrode passing
through Broca area with 6 contacts spaced at 5 mm. We then used
a compact convolutional network-based architecture to recover
speech mel-cepstrum coefficients followed by a 2D convolutional
network to classify individual words. We then interpreted the
former network weights using the theoretically justified approach
devised by us earlier [1].

Results: We achieved on average 44% accuracy in classifying
26+1 words (3.7% chance level) using only 6 channels of data
recorded with a single minimally invasive sEEG electrode. We
compared the performance of our compact convolutional network
to that of the DenseNet-like architecture that has recently been
featured in neural speech decoding literature and did not find
statistically significant performance differences. Moreover, our
architecture appeared to be able to learn faster and resulted in
a stable, interpretable and physiologically meaningful decision
rule successfully operating over a contiguous data segment no-
overlapping with the training data interval. Spatial character-
istics of neuronal population pivotal to the task corroborate
the results of active speech mapping procedure and frequency
domain patterns show primary involvement of the high frequency
activity.

Conclusions : Most of the speech decoding solutions available
to date either use potentially harmful intracortical electrodes
or rely on the data recorded with impractically massive multi-
electrode grids covering large cortical area. Here we for the
first time achieved practically usable decoding accuracy for the
vocabulary of 26 words + 1 silence class backed by only 6 chan-
nels of cortical activity sampled with a single sEEG shaft. The

decoding was implemented using a compact and interpretable
architecture which ensures robustness of the solution and requires
small amount of training data. The proposed approach is the
first step towards minimally invasive implantable BCI solution
for restoring speech function.

I. INTRODUCTION

Brain-computer interfaces (BCIs) directly link the nervous
system to external devices [2] or even other brains [3]. While
there exist many applications of BCIs [4], clinically relevant
BCIs are of primary interest since they hold promise to reha-
bilitate patients with sensory, motor, and cognitive disabilities
[5],[6].

BCIs can deal with a variety of neural signals [7], [8] such
as, for example, electroencephalographic (EEG) potentials
sampled with electrodes placed on the surface of the head
[9], or neural activity recorded invasively with intracortical
electrodes penetrating cortex [10] or placed onto the cortical
surface [11]. A promising and minimally invasive way to
directly access cortical activity is to use stereotactic EEG
(sEEG) electrodes inserted stereotactically via a twist drill or
a burr hole made in the skull. Recent advances in implantation
techniques including the use of brain’s 3D angiography, MRI
and robot-assisted surgery help to further reduce the risks of
such an implantation and make sEEG technology an ideal
trade-off for BCI applications [12].

Current study deals with restoration of speech function,
one of the most exciting potential applications of the BCI
technology. Several attempts have already been made and
certain progress is achieved in decoding both individual words
[13], [14] and phonetic features [15] with practically usable
accuracy. However, these studies relied on heavily multi-
channel brain activity measurements implemented either with
intracortical arrays [16] or with massive ECoG grids [17],
[13], [18] covering significant cortical area. Both solutions for
reading off brain activity are not intended for a long term
use and are associated with significant risks to a patient [19].
sEEG is a promising alternative that has already being tried for
the speech decoding task [20] with some success. This study,
however, relies on the high count of sEEG channels distributed
over a large part of the left frontal and left superior temporal
lobes which hinders practical applications.
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Fig. 1. The architecture based on[1] and adapted for speech classification
task. We used the same envelope detector technique to extract robust and
meaningful features from the sEEG. We then used the LSTM layer to account
for the sequential structure of the mel-spectrogram and finally decoded it
with a fully connected layer over the LSTM hidden state. A separate 2D
convolutional network was trained and used to classify separate words on top
of the decoded mel-spectrogram.

Here we explore the possibility of decoding individual
words from the sEEG data sampled with a single 6-channel
shaft penetrating the brain and passing though critical speech
areas. To ensure reliable and interpretable decoding we extend
and employ our compact deep neural network architecture with
factorised spatial and temporal processing [1].

II. METHODS

We collected approximately one hour of data (split into
two sessions) where we recorded sEEG activity during overt
speech (6 different randomly shuffled phrases and rest). We
have also recorded synchronized audio speech signals. The
sEEG recording was carried out in an intellectually intact
epilepsy patient implanted for medical reasons with an sEEG
electrode passing through Broca area with 6 contacts spaced
at 5 mm as shown in Figure 2.

We first employed a compact convolutional network archi-
tecture developed by us earlier for motor BCI purposes [1] and

Fig. 2. Stereotactic EEG (sEEG) electrode contacts used in this study
extracted from post-surgical CT scan and superimposed onto subject’s MRI.
Bipolar stimulation between the 4th and the 5th electrodes consistently caused
speech arrest in this patient.

augmented it with a single LSTM layer. Since here we aim to
decode our intermediate target comprising several mel-spectral
coefficients we have also modified the fully connected layer
so that it has M = 80 output neurons each corresponding
to a mel-spectral coefficient whose temporal profile we are
aiming to reconstruct from the 6-channel sEEG data. Note that
unlike in [20] we do not specify upfront the feature extraction
parameters and let our architecture learn them during the
training process which aimed to optimise mean Pearson’s
correlation coefficient between the original and sEEG decoded
mel-spectrum timeseries. For training we used the first 70%
of data which corresponded to the contiguous block of data
of duration approximately 40 minutes. The last 20 minute
segment was used for testing. As our intermediate target
we have also experimented with speech envelope and linear
predictive coding (LPC) coefficients.

After having trained our compact architecture to decode the
intermediate target (mel-spectrum, speech envelope, LPC) we
used a 2D-convolution network to perform discrete classifica-
tion of 26 words and the silent class. For this step we prepared
the data by cutting the segments around each word using our
in house developed simple threshold based procedure. Here
again, we used the first 70% percents of word repetitions for
training and the last 30% for testing which roughly ensured
no overlap of the contiguous time intervals from which the
training and testing data samples were collected. We used
cross-entropy as a loss function to train the 2-D convolutional
network, see Figure 1.

III. RESULTS

Our compact architecture processing only 6 sEEG channels
form a single sEEG shaft achieved 62% mean correlation



TABLE I
DECODING PERFORMANCE ACHIEVED WITH COMPACT ARCHITECTURE.

THE TABLE SHOWS CORRELATION COEFFICIENT FOR MEL-SPECTORGRAM,
LPC-COEFFICIENTS AND SPEECH ENVELOPE. AND ALSO ACCURACY FOR

WORDS CLASSIFICATION

Mels LPC Envelope Words

Compact DNN 0.62 0.51 0.52 0.44

coefficient over M = 80 mel-spectral coefficients which
is comparable to the accuracy reported in [18] where sig-
nificantly greater count of data channels collected by ten
sEEG shafts was used. Decoding the timeseries of ten LPC
coefficients and speech envelope yielded 51 % and 52 %
correlation correspondingly, see Table I. An example of the
original and sEEG-decoded 80 mel-spectral coefficients is
shown in Figure 3. The achieved so far decoding accuracy
does not yield intelligible speech when the recovered mel-
spectrum is converted back into the sound. Nevertheless, the
decoded mel-spectral patterns support the classification of
discrete words sufficiently well.

We achieved on average 44% accuracy in classifying 26+1
words (3.7% chance level) using only 6 channels of data
recorded with a single minimally invasive sEEG electrode.
Figure 4 shows the corresponding confusion matrix. Interest-
ingly, according to this matrix words 6,7 and 8 tend to be
confused and at the same time these words are characterised by
the presence of prominent fricative sounds ”[sh]” and ”[zh]”.
Also words 15 and 16 get confused and both share a very
pronounced ”[l]” sound.

Spatial characteristics of neuronal population pivotal to the
task as shown in the top panel of Figure 5 that emphasise
the importance channel 6 for decoding partly corroborate the
results of active speech mapping procedure which found that
bipolar electrical stimulation of electrodes 4 and 5 resulted
into transient speech arrest as shown in Figure 2. Frequency
domain patterns presented in the bottom panel of Figure
5 show primary involvement of the high frequency activity
which is in agreement with most invasive BCI studies.

Using the task at hands we have compared the performance
of our extended compact convolutional network to that of the
DenseNet-like architecture [21] that has recently been featured
in neural speech decoding literature [18] and did not find
statistically significant performance differences. Moreover, due
to its compactness our architecture appears to learn faster and
results in a stable, interpretable and physiologically meaning-
ful decision rule successfully operating over a contiguous data
segment non-overlapping with the training data time interval.

IV. CONCLUSION

Most of the speech decoding solutions available to date
either use potentially harmful intracortical electrodes or rely on
the data recorded with impractically massive multi-electrode
grids covering large cortical area. Here we for the first time
achieved practically usable 44% of decoding accuracy for
the vocabulary of 26 words + 1 silence class backed by

Fig. 3. Example of a true mel-spectrogram and decoded from sEEG mel-
spectrogram

Fig. 4. Confusion matrix of classified words. Words list: 0. silence, 1. zhenia,
2. shiroko, 3. shagaet, 4. zheltykh, 5. shtanakh, 6. shuru, 7. uzhalil, 8. shershen,
9. lara, 10. lovko, 11. krutit, 12. rul, 13. levoi, 14. rukoi, 15. liriku, 16. liubit,
17. lilia, 18. babushka, 19. boitsia, 20. barabanov, 21. belogo, 22. barana, 23.
bolno, 24. bodaet, 25. beshenyi, 26. byk

Fig. 5. Theoretically justified weights interpretation applied to the most
relevant branch of architecture in Figure 1. Orange trace in the top panel
shows power spectral density pattern of the activity of the neuronal population
this branch is tuned to. The bottom panel shows the spatial pattern of this
population. We can conclude that this source dominantly projects onto the 6th
contact located at the lateral part of the sEEG electrode (shaft), see Figure 2.

only 6 channels of cortical activity sampled with an sEEG



electrode. The decoding was implemented with a compact
and interpretable architecture which ensures robustness of the
solution and requires small amount of training data. Our exper-
iments (not described here) show that the compact architecture
delivers the accuracy comparable to that obtained with a larger
and less interpetable architectures. The proposed approach is
the first step towards practical minimally invasive implantable
BCI solution for restoring speech function.

ACKNOWLEDGMENT

This work is supported by contract TS 20210517019 /6.12-
20/250521-1 ”Brain activity based speech decoding” from
LLC Huawei to the Center for Bioelectric Interfaces, NRU
HSE.

REFERENCES

[1] A. Petrosyan, M. Sinkin, M. Lebedev, and A. Ossadtchi, “Decoding
and interpreting cortical signals with a compact convolutional neural
network,” Journal of Neural Engineering, vol. 18, no. 2, p. 026019,
2021.

[2] N. G. Hatsopoulos and J. P. Donoghue, “The science of neural interface
systems,” Annual review of neuroscience, vol. 32, pp. 249–266, 2009.

[3] M. Pais-Vieira, M. Lebedev, C. Kunicki, J. Wang, and M. Nicolelis, “A
brain-to-brain interface for real-time sharing of sensorimotor informa-
tion,” Scientific reports, vol. 3, p. 1319, 02 2013.

[4] S. N. Abdulkader, A. Atia, and M.-S. M. Mostafa, “Brain computer
interfacing: Applications and challenges,” Egyptian Informatics Journal,
vol. 16, no. 2, pp. 213–230, 2015.

[5] J. N. Mak and J. R. Wolpaw, “Clinical applications of brain-computer
interfaces: current state and future prospects,” IEEE reviews in biomed-
ical engineering, vol. 2, pp. 187–199, 2009.

[6] U. Chaudhary, N. Birbaumer, and A. Ramos-Murguialday, “Brain–
computer interfaces for communication and rehabilitation,” Nature Re-
views Neurology, vol. 12, no. 9, p. 513, 2016.

[7] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a
review,” Sensors, vol. 12, no. 2, pp. 1211–1279, 2012.

[8] M. A. Lebedev and M. A. Nicolelis, “Brain-machine interfaces: From
basic science to neuroprostheses and neurorehabilitation,” Physiological
reviews, vol. 97, no. 2, pp. 767–837, 2017.
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